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Abstract 
 
The mean and the life-limiting behavior under fatigue of the 
nickel-based superalloy, IN100, separated (or converged) as a 
function of stress level and dwell loading. This behavior was 
related to the control of the life-limiting behavior by the small-
crack growth regime, producing its much slower response to stress 
level and dwell-time, relative to the mean-lifetime behavior. The 
lifetime probability density is therefore, modeled as a 
superposition of the crack growth lifetime density and a mean-
lifetime density. The crack growth density is calculated with the 
help of small-crack growth data and the distribution in the crack 
initiation size. The mean-lifetime density is estimated from a 
relatively small number of total lifetime fatigue tests. In IN100, 
we apply this approach to predict the effects of stress level and 
dwell time on the lifetime distribution and the B0.1 (1 in 1000 
probability of failure) lifetime limit.    
 

Introduction 
 
Accurate life prediction of fracture critical components is essential 
for safe and reliable operation, as well as for cost effective life 
cycle management [1]. A probabilistic lifing method allows for 
the incorporation of material and microstructural uncertainties, 
and service-related variability in loading, environment, inspection, 
etc. into the life-prediction model. Often, in the past, the approach 
has been to empirically determine the uncertainty factors that 
would represent the variability in otherwise deterministically 
calculated lifetime [2, 3]. Recently, the emphasis has increasingly 
been on physics-based probabilistic life prediction methods, 
where the lifetime is explicitly modeled in terms of the 
uncertainty in the intrinsic material factors and the extrinsic 
variables [4, 5]. However, the focus has been on the mean-fatigue 
relationship to these variables and the probabilistic treatment is 
accomplished by randomizing the parameters in such relationships 
[5, 6]. In other words, the lifetime variability is considered as due 
to random deviations from the mean behavior and hence, the 
lower-tail is derived by extrapolating the deviations about the 
mean. The “mean-based” approach to fatigue variability may, in 
some cases, produce inconsistent probabilistic lifetime-limits with 
respect to material and extrinsic variables necessitating a large 
number of experiments for verification, as illustrated in [7, 8]. 
 
Another approach to probabilistic life-prediction could be to 
consider, that in any material the microstructure can randomly 
arrange into local configurations [9, 10]. These configurations can 
vary in terms of their size scale and/or the degree of 
heterogeneous deformation upon fatigue loading, and will occur 
with differing probabilities. Then, the total lifetime variability can 
be described as a probabilistic realization of sequential failure 
mechanisms occurring in the order of decreasing heterogeneity 
level [9]. Theoretically, under any nominal microstructure and 
fatigue loading, it is possible to assign a probability to the 
occurrence of a microstructural configuration where crack 

initiates almost instantaneously. The lower-tail behavior in this 
approach is therefore, limited by the (small + long) crack growth 
regime. This hypothesis also implies that, for a given crack 
initiation location (surface or subsurface), the mean-lifetime-
dominating mechanisms are associated with relatively lower 
heterogeneity levels and bear a larger role of the crack initiation 
regime. The mean-behavior, therefore, is considered to respond 
differently than the lower-tail behavior, to the microstructure and 
loading variables. For example in Ti-6Al-2Sn-44Zr-6Mo (Ti-6-2-
4-6), an α+β titanium alloy, the crack initiation regime is 
significantly more sensitive to stress level and temperature when 
compared to the crack growth rates. This was shown to produce 
an increased separation between the mean-lifetime and the life-
limiting behavior with a decrease in either the stress level or the 
temperature [7].  
 
In this paper, the above approach is applied to describing the 
fatigue variability behavior of the nickel-based superalloy, IN100. 
The effects of stress level and dwell time on the mean vs. the life-
limiting behavior are evaluated. The lifetime probability density 
and the B0.1 lifetime limit are predicted as a function of stress 
level and dwell time, with the help of small-crack growth data and 
a relatively small number of total lifetime experiments.  
 

Material and Experimental Procedure 
 

Material 
 
The material in this study was a fine-grained, subsolvus powder-
processed nickel-based superalloy, IN100. The median γ-grain 
size was about 4 μm. The microstructure of the alloy is presented 
in Fig. 1 showing the γ-primary-γ´ structure (Fig. 1(a)) and the 
secondary γ´ precipitates (Fig. 1(b)).  
 
Experimental Procedure 

The specimens for the stress-lifetime (S-N) fatigue and the small 
crack growth tests were extracted by electro-discharge machining 
in the circumferential orientation from a pancake forging of the 
material. The specimens had cylindrical gage with button-head 
ends. The gage length was 15.2 mm and the diameter was 5 mm. 
The gripping assembly was designed to extend into the furnace 
and was held at temperature during the elevated temperature tests. 
The S-N fatigue specimens were run in the low stress ground 
surface condition.  
 
The fatigue experiments were conducted in load control using an 
MTS servo-hydraulic test system with a 458 controller. The test 
temperature was 650°C. An ATS dual-zone resistance-heated 
furnace was used for this purpose. Thermocouple leads were 
welded to the ends of the specimen gage to control and monitor 
the temperature during the test. The frequency of 0.33 Hz and the 
stress ratio of 0.05 were employed. The dwell fatigue tests were 
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run with 6 seconds dwell at the peak load while maintaining the 
other experimental conditions the same.  
 
The small crack growth experiments were run in the same test 
system under no-dwell and 6 seconds dwell conditions, and 
employed both the round-bar and, in some cases, square cross-
section specimens. An electropolished surface condition was used 
for these experiments. These involved monitoring the 
development and growth of multiple cracks in the same specimen 
throughout its lifetime. The acetate replication technique was 
employed to record crack lengths at predetermined intervals. At 
each replication step, the test was interrupted, and the specimen 
was unloaded and cooled down to room temperature. The 
replication was done under a hold load of 60% of the peak load in 
the fatigue cycle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Microstructure of IN100; (a) the γ-primary-γ´ 
morphology and (b) the secondary γ´ structure.  
 
The microstructure and the fatigue fracture surfaces were 
characterized using a Leica field emission scanning electron 

microscope (SEM). The crack initiation size was measured on the 
fracture surfaces using the ImageProTM image analysis program. 
The crack length measurement on the replicas was done in an 
Olympus optical microscope.  
 

Results and Discussion 

Description of fatigue variability and the role of small crack 
growth 
 
The fatigue variability behavior of IN100 under constant 
amplitude loading at 650°C is shown in Fig. 2. The mean vs. life-
limiting behavior is illustrated in Fig. 2(a) and the cumulative 
distribution functions (CDF) are plotted in Fig. 2(b). Figure 2(a) 
indicates that a separation of lifetimes occurred with a decrease in 
the stress level causing the mean-lifetime, represented by the 
dashed line, to diverge from the life-limiting response. Such a 
separation could occur when, relative to the mean-dominating 
behavior, the life-limiting behavior has a much slower response to 
stress level. Besides the stress level, the mean and the life-limiting 
behavior can be affected to different degrees as a function 
microstructure and temperature producing separation / overlap 
between the two as shown in [7].  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  (a) 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (b) 
Figure 2. The fatigue variability behavior of IN100; (a) The mean 
vs. life-limiting behavior and (b) Cumulative distribution 
functions showing the B0.1 lifetimes. 
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Figure 2(b) shows that the B0.1 lifetimes (indicated by arrows) 
based on the extrapolation of total variability to the lower tail do 
not exhibit a consistent trend with respect to stress level. For 
example, a significantly higher B0.1 lifetime is predicted at 1200 
MPa than at 1150 MPa. On the other hand, although the predicted 
B0.1 lifetime at 1100 MPa is larger than at 1150 MPa, it is non-
conservative (i.e., larger) with respect to the observed minimum 
lifetime at that stress level. Such anomalous trends may be 
attributable to the assumption that the increase in uncertainty with 
respect to stress level (or any other variable) can be described as 
an increase in the deviation from the mean behavior. Further, it is 
noted that, while in some cases, the separation of lifetimes may 
not be discernible; in others it may require an impractical number 
of experiments to observe the same. In the following sections we 
discuss, perhaps, a more accurate representation of the lower tail 
and the total lifetime probability density, which provides 
physically consistent probabilistic lower lifetime-limits, 
independent of the number of total-lifetime experiments.  
 
An examination of the crack initiation modes revealed that the 
life-limiting distribution, at lower stress levels, consisted of 
surface non-metallic particle initiated failures while the mean-
dominating distribution consisted of a mixture of subsurface 
NMP-initiated and surface pore-initiated failures. This is 
summarized in Fig. 3 in terms of the crack initiation size vs. 
lifetime relationship. The sizes reported in Fig. 3 were measured 
in fracture surfaces. Figure 3 shows that there is a slight tendency 
towards larger NMP-related crack initiation sizes at 1100 MPa 
than at 1150 MPa. However, the separation of lifetimes is 
governed by the mode and the location of crack initiation rather 
than the size.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The separation of lifetimes with respect to crack 
initiation mechanisms in IN100. 
 
The Role of the small crack growth regime. As stated previously, 
the separation of mean-lifetime behavior from the life-limiting 
response with decreasing stress level can be attributed to the 
relatively stronger sensitivity of the mean-behavior to stress level. 
In other materials, including Ti-6-2-4-6 [7, 9, 10] and a γ-TiAl 
based alloy [8], we have shown that this slower response of the 
life-limiting behavior to stress level is due to its dominance by the 
crack growth regime. Physically, this was reasoned as due to the 
development of a hierarchy of heterogeneity levels at any given 
loading condition producing a sequential selection of failure 
mechanisms in the order of decreasing heterogeneity level [9]. A 

probability can, therefore, be assigned to the occurrence of a 
purely crack growth lifetime controlled mechanism, irrespective 
of the nominal microstructure and loading condition [9]. The 
variability in the crack growth behavior, therefore, is a critical 
input in describing the lower tail of the lifetime probability 
density.  
 
By some definitions, the small-crack growth represents the regime 
where the crack front spans only a few microstructural units and 
therefore, is strongly influenced by the local variation in 
properties and microstructural boundaries. Small cracks are 
known to grow below the threshold for long cracks, and have 
faster rates at the same stress intensity factor range (ΔK). The 
strong microstructure-scale influence accentuates as larger degree 
of fluctuation in growth rate as well as increased variability across 
different small-cracks in the same sample, when compared to the 
long crack. Of course, part of the fluctuation in small-crack 
growth rates can also be attributed to the frequency of data 
collection and the data reduction technique. Therefore, for 
effective comparison, similar measurement intervals and data 
reduction technique need to be employed across all cracks. Here, 
the crack growth rates were calculated by using the three-point 
sliding polynomial fit to the crack depth (a) vs. cycle (N) data. 
The stress intensity factor was calculated using the Foreman and 
Shivakumar K-solution for an elliptical surface crack in a round 
bar [11]. In addition to the round-bar geometry, some of the small 
crack growth data shown in Fig. 4 were obtained from square 
cross-section samples but with similar cross-sectional area and 
gage length as the cylindrical specimens. The K-solution for 
elliptical surface crack by Newman and Raju [12] were used for 
crack growth analysis in this geometry.  
 
The variability in the small crack growth rates in IN100 at 650°C 
is compared to the long crack growth regime in Fig. 4. Figure 4(a) 
compares the growth rates of the NMP and the void initiated 
cracks and Fig. 4(b) shows the effect of stress level on the small 
crack growth behavior. These figures indicate that the long crack 
growth behavior showed a significantly less degree of variability 
than the small crack regime. Furthermore, the variability in the 
small crack growth behavior (for void-initiated cracks at 1150 
MPa) reduced to a similar level as in the long crack beyond the 
crack length of about 100 μm. Clearly, the NMP-initiated small 
cracks showed higher growth rates than the pore-initiated cracks 
(Fig. 4(a)). Besides the relatively larger crack initiation sizes 
associated with the NMP (Fig. 3), this could also be due to the 
tensile residual stress field around a NMP due to the elastic 
incompatibility as well as, the thermal expansion mismatch with 
the matrix material [13, 14]. The effect of stress level on the small 
crack growth behavior also appears to be significant (Fig. 4(b)) in 
this material. These small crack growth effects need to be 
accounted for, and will play an important role in the proposed 
probabilistic life-prediction model. 
 
The role of small crack growth in the separation of lifetimes was 
first studied with the help of deterministic calculations. For this, 
the crack growth lifetime bounds were calculated by considering 
the upper and the lower bound on the small crack growth behavior 
in conjunction with the maximum and the minimum crack 
initiation size respectively. The life-limiting behavior 
corresponded to crack initiation from a NMP. However, due to the 
small frequency of occurrence of the NMP-initiated mechanism, 
only one small crack growth curve was available in that crack 
initiation mode (Fig. 4(a)), which was taken as the upper bound of 
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the small crack growth behavior for the calculation purposes. The 
lower limit of the NMP-initiated small crack growth behavior was 
assumed to correspond to the upper-bound crack growth curve of 
the pore-initiated mechanism (Fig. 4(a)). This is illustrated in Fig. 
5. As shown, multiple power-law fitted segments (labeled as S1 to 
S3) were employed to represent each crack growth curve to obtain 
the crack growth rate (da/dN) – ΔK relationship for the lifetime 
calculations. Similarly, due to the small number of small crack 
growth experiments at 1200 MPa, the upper-bound small crack 
growth curve from the pore-initiated mechanism at 1150 MPa was 
also taken as the lower-limit curve at 1200 MPa. These 
approximations were considered suitable in capturing the shift to 
higher small crack growth rates with stress level, and for crack 
initiation from a NMP. Additional small crack growth data under 
these specific conditions will certainly improve the accuracy of 
the predictions. For crack initiation size calculation, two schemes 
were used. In these, the crack depth, a, was taken as (i) the radius 
of the equivalent semicircle with the same area as the crack 
initiating feature, and (ii) the radius of the semicircle 
circumscribing the crack initiation feature. The range in the NMP-
related crack initiation sizes, which were measured in the fracture 
surfaces, was used in the calculations at all stress levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                  (b) 
Figure 4. Small crack growth behavior of IN100; (a) Effect of 
crack initiation from NMP vs. pore and (b) Effect of stress level 
on the growth rates.  
 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Small crack growth bounds and the fitted power-law 
segments used in the deterministic calculations at 1150 and 1100 
MPa.  
 
The role of small crack growth in the separation of mean and the 
life-limiting behavior is illustrated in Fig. 6. The figure shows, 
that the calculated crack growth bounds reasonably represent the 
range in the life-limiting behavior. The mean-lifetime response, 
on the other hand, separates from the crack-growth-controlled 
behavior with decreasing stress level. The lifetime probability 
density can therefore, be modeled as a superposition of the crack 
growth behavior upon the mean-lifetime behavior. The effect of 
microstructure and loading variables on the lifetime variability 
can then be evaluated by separating their effects on the crack 
growth lifetime and the mean lifetime, as illustrated in a 
forthcoming section. 
 
 

 

 

 

 

 

 

 
 
 
Figure 6. Role of small crack growth in the separation of mean-
behavior from the life-limiting response. 
 
Effect of dwell loading on the mean vs. life-limiting behavior 

From the above discussion, the effect of dwell loading on the 
lifetime variability can be described in terms of separate effects on 
the crack growth lifetime and the mean-dominating behavior. The 
small crack growth data, obtained at 1150 and 1100 MPa, with 6 
second dwell at the peak load is shown in Fig. 7. The figure 
indicates that, while the long-crack regime was not significantly 
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influenced by the dwell loading, it had a significant effect on the 
small crack growth rates when compared at the same stress level. 
Also, there was a strong effect of stress level on the small crack 
growth regime under dwell loading. As indicated previously, in 
the proposed life-prediction approach, characterizing these effects 
is vital in determining the life-limiting behavior and the 
probabilistic lifetime limit.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The effect of dwell time on the small crack growth 
regime in IN100. 
 
The mean vs. life-limiting behavior under dwell loading is 
presented in Fig. 8. The figure shows that the 6 second peak dwell 
produced a significant reduction in the mean-lifetime (in terms of 
cycles) but a much weaker effect on the life-limiting behavior. 
The calculated crack growth bounds, based on the small crack 
growth variability at 1100 MPa (Fig. 7) and the range in the crack 
initiation sizes, are superimposed in the figure and, once again, 
illustrates that the life-limiting fatigue response is reasonably 
captured by the range in the crack growth lifetime. Comparing the 
two cases, i.e., with and without dwell, it appears that the 
separation of mean from the life-limiting behavior is related to 
this control of the life-limiting response by the crack growth 
regime, which promoted a smaller degree of change in the life-
limiting behavior with respect to both the stress-level and the 
dwell-time. The mean-lifetime, on the other hand, showed a 
significantly stronger sensitivity to these variables. 
 
Calculation of the lifetime probability density 

Calculation Procedure. The different rates of response of the 
crack-growth-controlled behavior and the mean-dominating 
behavior, as discussed above, may explain the increased 
separation/overlap between the two as a function of stress level 
and dwell time, thereby affecting the total lifetime variability. The 
lifetime probability density can therefore, be represented as a 
superposition of the crack growth probability density function 
(PDF) and a mean-dominating PDF [10]: 
 

)()()( xfpxfpxf mmllt +=                (1) 

where, ft(x), fl(x), and fm(x) are the total lifetime, the life-limiting, 
and the mean-dominating probability densities respectively. The 
weighting parameters, pl and pm, are the probability of 
occurrences of the crack-growth-controlled and the mean-

dominating mechanism respectively. It can be shown that the 
lower-tail of the above bimodal probability density, which is most 
pertinent in the calculation of the probabilistic lifetime-limit, is 
strongly governed by fl(x) and does not show substantial change 
within reasonable range of values of pl and pm [10]. Furthermore, 
the probabilistic limit, for e.g., the B0.1 lifetime, can be shown to 
be bounded by the B0.1 lifetime obtained from the crack growth 
density [10] (i.e., pm → 0). In the present case, the values of pl and 
pm were derived from the S-N experiments. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The role of small crack growth in the effect of dwell 
time on the mean vs. life-limiting fatigue response. 
 
The life-limiting density, fl(x), was simulated by using the crack 
initiation size distribution [7] and the small crack growth data. 
The crack initiation size was measured on the fatigue fracture 
surfaces and was modeled by the lognormal probability density 
function. This is shown in Fig. 9(a). The small crack growth data 
were fitted by multiple power-law (Paris) segments [15] such that: 
     

mC Ke
dN
da

Δ=                           (2) 

 
The Paris-type coefficient and exponent, C and m, were treated as 
random variables and were modeled by the normal density 
function [16]. The parameters of C and m were derived by the 
Maximum Likelihood Estimate (MLE) method using the available 
small crack growth data. It is also recognized that the variables, C 
and m are strongly negatively correlated [15, 16] and this 
correlation was invoked in the simulation of lifetimes. The joint 
PDF of C and m for the lower-ΔK small-crack growth segment in 
the no-dwell case is presented in Fig. 9 (b).  
 
The CDFs associated with the simulated life-limiting densities, 
fl(x), are shown in Figs. 10 and 11 for the 0 second and the 6 
second peak dwell cases, respectively. The crack-growth-
controlled densities show reasonable correspondence with the 
observed distribution in lifetime at the higher stress levels, as in 
Figs. 10(a) and 11 (a) (due to convergence of the mean and the 
life-limiting behavior) but describe the life-limiting response at 
the lower stress levels, as illustrated in Figs. 10(b and c) and 
11(b).  
 
The mean-dominating density, fm(x), can be estimated by running 
a relatively small number of S-N experiments under the 
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conditions of interest. This is illustrated in Fig. 12. Here, 4 tests 
were randomly selected at each stress level and for the no-dwell 
and the peak dwell condition. The parameters of fm(x) were then 
determined by the MLE method assuming the lognormal model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             (b) 
Figure 9. Examples of input to the simulation of the life-limiting 
probability density, fl(x); (a) The crack initiation size distribution 
for the NMP initiated cracks in terms of the diameter of the 
equivalent circle, and (b) The joint PDF of the small crack growth 
variables, C and m for the case of 0 dwell time.  
 
Predicted Lifetime Densities. The predicted lifetime densities, 
calculated according to Eqn. (1), are shown in Figs. 13 (a) and (b) 
for the two loading conditions. The conventional description of 
fatigue variability, where the lower tail is considered as an 
extrapolation of deviations from the mean behavior, is also plotted 
in these figures. The B0.1 lifetimes obtained by the two 
approaches have been indicated by vertical lines and the 
experimental points are represented by open symbols. The results 
show that the suggested lifetime modeling provides a more 
accurate representation of the effect of stress level and dwell time 
on fatigue variability. Especially, the predictions of the lower tail 
and the B0.1 lifetimes are more consistent with respect to these 
variables and almost independent of the number of S-N tests 
therefore, significantly decreasing the uncertainty in the 
probabilistic lifetime limit. For example, although the total  
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  (c) 
Figure 10. The CDFs of the calculated life-limiting probability 
densities for the case of no-dwell; (a) σmax = 1200 MPa, (b) σmax = 
1150 MPa, and (c) σmax = 1100 MPa. 
 
variability (and mean-lifetime) increased with decreasing stress 
level and dwell time, this is attributed to the separate degree of 
effects of these variables on the small crack growth regime and 
the mean-lifetime behavior. Consequently, the lower-tail and the 
B0.1 lifetime are not entirely dependent on the mean-behavior or 
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the number of data points, producing, perhaps, a physically more 
accurate trend in the probabilistic lifetime limits (Fig. 13). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             (b) 
Figure 11. The CDFs associated with the calculated life-limiting 
densities for the case of 6 second peak dwell; (a) σmax = 1100 
MPa and (b) σmax = 1000 MPa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Input data (4 random tests at each stress level) for 
obtaining the mean-lifetime-dominating density, fm(x).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 13. Predicted lifetime probability densities and the B0.1 
lifetimes based on the proposed fatigue variability description; (a) 
no-dwell and (b) 6 second peak dwell. 
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As indicated above, a distinct attribute of the suggested method is 
that, the predictions of the B0.1 lifetimes are not heavily 
dependent on the time consuming, and often expensive S-N 
fatigue experiments. Notably, the predicted CDFs account for the 
solitary life-limiting failure at 1100 MPa with no-dwell (Fig. 
10(c)) and at 1000 MPa under dwell loading (Fig. 11(b)), which, 
due to the small probability of occurrence, otherwise requires a 
relatively large number of total lifetime experiments to capture. 
Nonetheless, the key to the method is the recognition that the 
lifetime variability is a result of separate responses of the crack-
growth-controlled behavior and the mean-dominating behavior 
with respect to both the intrinsic and the extrinsic variables. 
Therefore, merely a large number of experiments may still not be 
sufficient in accurate prediction of the probabilistic lifetime limits 
without the paradigm shift in the description of fatigue variability.   
 

Conclusions 

Based on this study, the following concluding points can be made: 
(i) The effect of stress level and dwell time on the 

fatigue variability and the probabilistic lifetime 
limit can be accurately predicted by considering 
separate responses of the crack-growth-controlled 
life-limiting behavior and the mean-lifetime 
behavior to these variables.  

(ii) The lifetime probability density can therefore, be 
modeled as a superposition of the crack growth 
lifetime density and the mean-dominating density. 

(iii) The B0.1 lifetimes predicted by this approach show 
a more consistent trend with respect to stress level 
and dwell time independently of the number of S-N 
fatigue experiments therefore, significantly 
decreasing the uncertainty in these probabilistic 
limits.  
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